Categories
Coding Project Euler R

Project Euler Problem #13

Problem 13 on Project Euler asks us to sum 100 50-digit numbers and give the first 10 digits of the result. This is pretty easy. Note we are using R’s integer division operator %/% to discard the remainder of the large summed integer and just gives us the first 10 digits of the result.

## Problem 13
problem13 <- function() {
    nums <- scan("problem13.dat")
    s <- sum(nums)
    s %/% 10^(floor(log10(s))9)
}

Categories
Coding Project Euler R

Project Euler Problem #14

Problem 14 on the Project Euler site asks us to find the longest chain under 1 million created using the Collatz mapping. This is fairly straightforward, although performance again is not great:

## Problem 14
# Collatz conjecture
problem14 <- function(N) {
        maxChain <- 0
        chains <- rep(0,N)
        x <- 1
        for (i in 1:N) {
                n <- i
                chain <- 0
                while(n > 1) {
                        n <- ifelse(n %% 2 == 0, n/2, 3*n+1)
                        chain <- chain + 1
                        if (n < N && chains[n] > 0) {
                            chain <- chain + chains[n]
                                break
                        }
                        
                }
                chains[i] <- chain
                if (chain > maxChain) {
                        maxChain <- chain
                        x <- i
                }
        }
        x
}

Categories
Coding Project Euler R

Project Euler Problem #12

Problem 12 on the Project Euler site asks:

What is the value of the first triangle number to have over five hundred divisors?

A triangular number T(n) is defined as \(T(n) = \frac{n(n+1)}{2}\). The R code below consists of a solution, which involves the fact that the number of proper divisors of an integer n can be calculated by first computing a prime factorisation of the number n, e.g. if <\(n = p^aq^b\), where p,q are prime, then the number of proper divisors of n can be calculated as \(d(n) = (a+1)(b+1)\). This solution is extremely slow (mainly due to the naive prime sieving algorithm), and could be speeded up dramatically with a little effort. # Sieve of Eratosthenes
prime.sieve <- function(n) {
 a <- seq.int(1,n)
 p <- 1
 M <- as.integer(sqrt(n))
 while ((p <- p + 1) <= M) {
  if (a[p] != 0)
    a[seq.int(p*p, n, p)] <- 0
 }
 a[a>1 & a>0]
}
 

# Trial Division
# Returns the exponents of the prime
# factors of n
# e.g. if n = p^a*q^b
# tdiv(n) will return (a,b)
tdiv <- function(n) {
 primes <- prime.sieve(n)
 factors <- c()
 i <- 1
 curr <- 0
 
 for (p in primes) {
  while (n %% p == 0) {
   curr <- curr + 1
   n <- n %/% p
  }
  factors[i] <- curr
  i <- i + 1
  curr <- 0
 }
 
 factors[factors > 0]
}

# Compute nth triangular number
T <- function(n) {
        (n*(n+1))/2
}
 
## Problem 12
# This is a slooow solution
problem12 <- function(N) {
 n <- 0 # current triangular number Tn
 i <- 5 # \sum_{i=1}^n{i}
 
 while (TRUE) { 
  n <- T(i)
  factors <- tdiv(n) 
  if (prod(factors+1) >= N) {
   return(n)
  }
  i <- i + 1
 }
}